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Introduction

Main Goal:

e discover properties on the numerical variables of a program,

° statically, at compile-time,
° automatically, without human interaction.

Applications of Numerical Properties:

® Check for illegal arithmetic operations: overflow, division by zero.
(Ariane 5 explosion on June the 4-th 1996 —> $ 500 M loss)

® Check for out-of-bound array or pointer accesses.
® Optimisation, debugging information inference.

® Parameters to non-numerical analyses.
(pointer analyses, parametric predicate abstractions, etc.)
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Overview

¢ Formal framework, previous work, motivation for our work.

¢ New numerical abstract domains: weakly relational domains.

¢ Improving the precision using generic symbolic manipulation techniques.
¢ Dealing with floating-point semantics.

¢ Application within the Astrée analyser and experimental results.
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(Simplified) Formal Framework



Language Syntax

For the sake of presentation:
® one data-type: scalars in I, where I € {Z, Q, R},
® no procedure,

® 3 finite, fixed set of variables: V.

¢ instructions 7 = X «— & assignment to X € V
| Ex07 test < € {=,<,...}
¢ expressions & = |[a,b] interval a € TU {—o0}, b€ TU {400},
X variable X € V
| =& unary operator
| E0€ binary operators ¢ € {+, x, ...}

Note: [a, b] models a non-deterministic choice within an interval.
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Semantics

Environments: maps p € (V — I).

Expression Semantics: [€]: (V —1) — P(I)

& maps environments to sets of numerical values:

[[a.b]](p) = {cella<e<b}
[ X ](p) = {pX)},
[ertez](p) = {vi+ve| v € [er](p), vz € [e2](p) },

etc.

Instruction Semantics: {Z}: PV —=1) - PV —=1)

A transfer function defines a relation between environments:

1 X —e}(R) {pl X —uvllpeR, vele]lp)

def

{e<t0?7H(R) £ {peR|Tvee](p) suchthat v 0 }.
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Reachability Semantics

L program points
Given a control-flow graph (L,e,I): |e € L entry point
I CLxZx1L arcs

we seek to compute the reachability semantics, the smallest solution of:

(V — 1) ifl=ce (initial state)
X = U {i}(Xy) ifl#e  (transfer function)
(3,1l

that gathers all possible environments at each program points.

Problem: This is not computable in general.
—> we will compute sound over-approximations of the Aj. ..
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Abstract Interpretation

Abstract Interpretation:
General theory of sound approximations of semantics [Cousot78].

Numerical Abstract Domain:

e computer-representable set D? of abstract values, together with:

® a concretisation: v: D¥f — P(V — 1),
® 3 partial order: CH 18T

® sound, effective abstract transfer functions {|I]}>ﬂ: {Z}ov)(XH C (yo{Z [}ﬁ)(Xﬁ),
a sound, effective abstract union Uf:  ~(X*%) U~(DF) C ~(XF U VR,

e effective extrapolation operators V, A if D¥ has infinite chains.

— we can perform a reachability analysis in L — D* soundly.

There does not exist an all-purpose abstract domain.
We need a fine control on both the semantic and algorithmic aspects!
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Existing Numerical Abstract Domains

Before this work, the two most used numerical abstract domains were:

-

Intervals (1976) Polyhedra (1978)
Ni (X € [a;, bi]) N; (206 Xi < 55)
non relational relational
linear cost unbounded cost

exponential in practice

There were other domains, but no domain “in-between’ these two.
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The Need for Relational Domains

Example:
I:=10
V=0
while o (I > 0) {
I =1-1

if (random()) { V:=V+1}
}0 // hereI = —1and 0 <V <11

To prove that V < 11 at o,
we need to prove the relational loop invariant V+ I < 10 at e.

Other applications:
® analysis of programs with symbolic parameters,
® modular analysis of procedures, (out of context)

® inference of non-uniform non-numerical invariants.  (e.g., pointer analysis)
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Weakly Relational Abstract Domains

New abstract domains introduced in this PhD:

® zone abstract domain,
® octagon abstract domain,

® zone congruence abstract domain.



The Zone Abstract Domain

Simplest of our three domains, but characteristic in its construction.

Zones enrich intervals with invariants of the form:
Nij (Vi = Vj < cij) cij € 1

A

/—
-

4 }

/

The zone abstract domain features:
® a precision between the interval and polyhedron domains; relational invariants,

® a quadratic memory cost and cubic worst-case time cost.

Zones are used in the model-checking of timed automata and Petri nets
but they need many new abstract operators to suit Abstract Interpretation needs.
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Zone Representation

Difference Bound Matrices: (DBM:s)

¢ matrix of size (n + 1) X (n+ 1) with elements in [ £ TU {+o0}:
® m;; # 400 is an upper bound for V; — V,

® m;; = +00 means that V; — V; is unbounded,
® m;p, mg; encode unary constraints: —V; < m;g, V; < myj,
def ..
¢ y(m) = { (v1,...,v,) €L|Vi, 4, v; —v; <my;, vo=0},
¢ m is the adjacency matrix of a weighted directed graph: V; 7, V.

Example:

J
0 | %} Vs
0 |+0c0 4 3
| Vil =1 400 +o0
Vol —1 1 4o
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Order Structure

The total order on I is extended to I = T U {+o0}.

The total order on I is extended to a partial order on D¥:
def

mCin Vi, 7, m;; < nyj point-wise partial order
lm " n| i e min(m;;, n;;) greatest lower bound
[m LI n] i = max(m;;, n;;) least upper bound
[Tﬂ g e +00 greatest element

Y]

However:

* m C*n = v(m) C v(n) but not the converse,
= 7(

* m=n=— y(m) n) but not the converse:  ~ is not injective!

— we introduce a normal form.
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Normal Form

Idea: Derive implicit constraints by summing weights on adjacent arcs:

Vi—Vo <3
e.g. Vo —V3 < —1
Vi—V3 <2
Shortest-Path Closure m*:  Floyd-Warshall algorithm:
( * def n+1
m;; = mg;
def
\ mgj =  IMyy
\ mffl e min(mfj, m?, + mij) if0<k<n

® derives all implicit constraints in cubic time,

® gives a normal form when y(m) # (: m* = inf—4{ n | y(n) = v(m) },
® enables emptiness testing: v(m) = () <= i, m}, <0,

® enables inclusion testing: (m) C v(n) <= m* C" n*, etc.
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Operator Example: Abstract Union

The union of two zones is not always a zone:

¥ is a sound counterpart for U:  y(m) U y(n) C v(m L n).

But it may not output the smallest zone encompassing two zones. . .
because of implicit constraints.

Solution: Define mU'n £ m*Lfn*

® always the best abstraction: ~(m U*n) = infc{ v(o) | y(m), v(n) C v(o) }

e mU*n is already closed: (mUfn)*=mUfn

Note: The intersection M* behaves differently (dually).
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Operator Example: Abstract Assignment

We propose several operators with varying cost versus precision trade-offs.

Exact Assignments: Only for X «— Y + [a,b], X «— X + |a,b], or X < [a,b].

( —a ifi:joandj:i07
| | ﬁ def b ifi=19and j = jo,
e.g. [{| Vio < Vig + la, b] [} (m)]m = +oo  otherwise if i+ = jg or § = jo,
\ m;.kj otherwise.

Interval and Polyhedra Based Assignments

We can reuse existing transfer functions from other abstract domains using:
® exact conversion operators: intervals — zones — polyhedra,

® best conversion operators: polyhedra — zones — intervals.  (using )

e best abstract assignment for linear expressions using polyhedra,

e.g. . . . ..
& e fast assignment of arbitrary expressions using intervals.
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Operator Example: Abstract Assignment

Problem: for many usual assignments, e.g., X <« Y + Z:

® there is no exact abstraction,
® the polyhedron-based assignment is too costly, (exponential cost)

® the interval-based assignment is very imprecise.  (not relational enough)

—> we introduce an operator with intermediate cost versus precision.

Interval Linear Form Assignments: V; « [ag, bo] + ) _([ag, bx] X Vi)
k

For each ¢, derive new bounds on V; — V; by evaluating:

aosbo]  + > ([ak, be] xmi(XF)  +  (Jag — 1, b; — 1] xm;(X*))
ki

using the interval operators +, X, and the interval projections 7 of variables V..

—> we can infer relational invariants for a linear cost.
Not optimal because we do not use the relational information in the zone.
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Operator Example: Widening

The zone abstract domain has infinite strictly increasing chains!

We need a widening V to compute fixpoints in finite time:

converge in finite time
towards an over-approximation of | J. v(yf)

def

b el s

{ o =20, should
Xz’—l—l = X vyi—l—l

Point-wise standard interval widening:

Example Widening:

def m;; if m;; > n;;
mvn),; = )
( )is { +00  otherwise

Unstable constraints are simply thrown away.

Notes:
® Any interval widening can be extended point-wisely.

N (Xz-ﬁ*) v yf may diverge!  Bad interaction between * and V.

1+1
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The Octagon Abstract Domain

Octagons extend zones to invariants of the form:
Nij (£Vi £V < ¢iy) Ie{Z,Q R}

i

D
7

® |t is strictly more expressive than the zone domain.
® |t has the same asymptotic cost: quadratic in memory and cubic in time.

e |t is sufficient to analyse our first example!

The main difficulty is to adapt the normal form algorithm.
All our exactness, best abstraction results derive from the new normal form.
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The Zone Congruence Abstract Domain

Zone congruences correspond to invariants of the form:

Nij (Vi =V +bij [cij]) 1e€{Z,Q}

A
° °
—o—F o ——
o °

The main difficulty is, again, to adapt the normal form algorithm.

We use a technique similar to Floyd—Warshall's algorithm in dioid algebras.
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Symbolic Manipulation



Core Principles

Idea: Replace expressions with nicer ones.

Suppose that Vp € v(X*), [e](p) C [€'](p), then:
AV —ebom () C (vo{V — e })(xF)

— we can safely use { V' « ¢’ ﬂﬁ(Xﬁ) in place of { V' «— ¢ ﬂﬁ(Xﬁ).

The same holds for tests.

Example Application:

If X €[0,1] in X*: we replace {V — X x Y }F(X%) with {V — [0,1] x YV }F(x?).
Useful because our abstraction of non-linear assignments is imprecise.

Note: Interactions betwen numerical abstract values ¥ and expression transformations.
(# performing a static program transformation before the analysis)
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Linearisation

Goal: Put arbitrary expressions to the form  [ag, bo] + Y_([ax, bx] X Vi).

k

Useful when we have interval linear form assignment operators. (zones, etc.)

Interval Linear Form Manipulations: « ,. , v ,u, ¢

Resemble a vector space structure.

® ([ao, bo] + g[am be] X Vi) -+ (lag, by + )k:[aﬁca byl X Vi)

= (([ao, bol +lag, b)) + T ([, bil+[af, Bil) x Vi)

* labl (lap b))+ Tlaj byl x Vi) £ ([a, b)x[a, b)) + I ([a. b] < [a}, b)) x Vi

o L([ag,bo]ﬂk:[ak,bk] x Vi, X S [ao, bo]+ > ([ak, br] xmie (X))

(on-the-fly intervalisation)
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Linearisation (continued)

Linearising an expression: (¢|) defined by structural induction:

o (Vi)(X®) = [1L,1]xV;
o (ertea)(XF) = (en)(XF) (e (XF)
o (erxea)(XH) = [a,b]v (ea)(XH)  when (e1)(X?) = [a,b]
o (e1xes ) (X j:i V(e (XD, X80 (ea)(XH)  or
erxez)(XF) = ((ea)(XF), X%) 0 (e )(XF)
Notes:

¢ Non-linear multiplication: we must choose whether to intervalise e or es.
example: intervalise the expression with smallest bounds

X e[0,1], Y € [-10,10] = (X x Y )(X*) =[0,1] x Y
¢ Linearisation provides simplification for free: ((X+Y)—-X)(X% =Y.
If X,Y € [0, 1], interval arithmetics gives [ (X +Y) — X ¥ = [—1,2] but [Y [¥ = [0, 1].
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Symbolic Constant Propagation

Idea: Enhance simplification-by-linearisation using expression propagation.

Example: X «Y +/,U— X -2

o {]U<—X—Z[}ti is replaced with {]U<—(Y+Z)—Zﬂh,
® which is linearised into { U « Y ﬂﬁ.

Technique: X% ¢ D is enriched with a map S* € (V — &).

¢ Abstract elements < X'*, S* > now represent:
7 <A SE>E {pen(X) | Vi, p(Vi) € [SH(VI) () }.

¢ Abstract assignments { X «— e ﬂﬁ < Xt % >

e propagate S! into e to get ¢’ and evaluate X¥ £ { X «— ¢/ ﬂﬁ(.)c'ﬁ),

e kill information on X in S¥ then add X = e.

Note: We must choose how far to propagate.
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Floating-Point Number Abstractions



IEEE 754-1985 Floating-Point Numbers:

We consider the IEEE 754-1985 norm because:

¢ it is widely implemented in today's hardware (Intel, Motorola),

¢ it is supported by the C language (and many others).

Example: 32-bit “single precision” float numbers F

Sign Exponent e Fraction b

S 68 o o o 61 bl e o o b23

The set [ of floats is composed of:

¢ normalised numbers: (—1)% x 267127 x 1.by - - - b3 (1 <e <254
¢ denormalised numbers: (—1)% x 27120 x 0.0y - - - bos (e =
¢ signed zeros: +0 and —0 (ife=0,0=0

¢ infinities and error codes: +o0o, —oo, Nal\/ (if e = 255
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IEEE 754-1985 Arithmetics

Floating-Point Expressions &:

E = la,b] interval a,b € F
X variable X € V
| O &y unary operator
| &0 & binary operators ® € {®, ®, ...}

Floating-Point Arithmetics:

Differences between floating-point and @Q, R arithmetics:

¢ rounding to a representable float occurs,
several types of rounding: towards +o00, —o0, 0 or to nearest.

¢ overflow: large numbers, division by 0 generate 400 or —o0,
¢ underflow: small numbers round to +0 or —0,

¢ invalid operations: 0/0, (+00) + (—00), etc. generate NalV.
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Chosen Floating-Point Semantics

Restrict to programs that use [f' as “approximated reals’:

¢ Rounding and underflow are benign,
but we must consider all rounding directions!

¢ Overflow and invalid operations result in a run-time error ().

¢ Error-free computations live in F/ ~ F N R, assimilated to a finite subset of R.

Partial Definition of | ¢ ﬂf: (with rounding towards +00)

def

° [er@ex]r(p) = { R(vi +v2) |v1 € [e1]f(p), v2a € [e2]r(p) },
® efc.

o [ if o =Qorx>2127(2 - 2729)
min {y € F' |y > x}  otherwise
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Difficulties in Adapting Relational Domains

¢ The interval domain is easy to adapt.
We simply round lower bounds toward —oo and upper bounds toward +o0.

¢ Relational domains cannNot manipulate floating-point expressions.
Such domains require properties of (Q, R not true in floating-point arithmetics!

eg. (X—-Y<)OAN(Y —-Z2<d) = (X —Z<c+d) (Zone propagation)

(XY < gAY o Z<d) A~ (XoZ<cdd)
(10** @ 1.000000019 - 10°*) @ (10%* & 1.000000019 - 10°%) = 0

Solution:

® [e]y is abstracted as a linear interval form on Q.

® |nvariant semantics will be expressed using Q, +, —, ...not [/, @, ©.
—> We keep the same abstract domains and operators as before.

PhD. Defense - Weakly Relational Numerical Abstract Domains - Antoine Miné 26/0



Floating-Point Linearisation

Rounding Error on Linear Forms: Its magnitude is the maximum of:

¢ a relative error ¢ of amplitude 2723, expressed as a linear form:

=(la,b] + Llai, bi] x Vi) = max([al, [b]) x [-2723,2729]4
3 (max([as], [bif) x [-272%,27%) x V;

(normalised numbers)

def _ B
¢ an absolute error w = [—27159 27159

| (denormalised numbers).

—> We sum these two causes of rounding.

Linearisation (e )¢:

def

o (e1@er)p(XF) =
(ex)p(X%) - (ea)p(X%)  e((er)e(X%) - e((ez)e(XF)) + w

° (la,0]@ea) s (X%) = ([a,0] v (e2Dp(X9) - ([a,0] v e(lea)e(AF))) - w

® etc.
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Application of Floating-Point Linearisation

Abstract Assignment: V «—e

We first evaluate e in the floating-point interval domain.

¢ If there is no run-time error ) detected, then

Vp € y(XF), [els(p) € [(e)s(X%)](p)
and we can feed |V « (e (X7 ﬂﬁ to an abstract domain in Q.

¢ If Q) is detected, we can still fall back to the interval domain.

Example: |[Z«— X6 (0.25® X) s linearised as
Z — ([0.749 - ,0.750 -] x X) + (2.35--- 10738 x [~1,1])

® Allows simplification even in the interval domain.
eg., if X e[-1,1], we get |Z] < 0.750-- - instead of |Z| < 1.25---

® Allows using a relational abstract domain. (zone, etc.)
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Floating-Point Zones

We are now sound, but not very efficient: abstract operations are expressed in Q.

—> This requires costly arbitrary precision exact rational packages!

Solution: Perform all abstract computations in F:

¢ linearisation: use sound floating-point interval arithmetics,

¢ zone domain: upper bounds computation are rounded towards +oo.

We lose some precision.
We gain much speed.

Note: Sound algorithms in IF are much harder to provide for polyhedral!
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Floating-Point Abstractions

To sum up, the following sound approximations are made:

[1 linearisation: rounding errors are treated as non-deterministic,
linearisation: non-linear computations are “intervalised’,
abstract domain: limits the expressiveness,

abstract operators,

1 O OO O

implementation in [: extra rounding errors.

Due to [] and [, our best abstraction results no longer hold!

Despite unpredictable [1, abstract computations are stable in many cases:
® when concrete computations are naturally contracting, e.g., X « 0.5X + [—1,1],
® when concrete computations have explicit limiters,

® specific widenings and narrowings can help.
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Real-Life Application Within Astrée



Presentation of Astrée

Astrée:

¢ Static analyser developed at the ENS.

¢ Checks for run-time errors in reactive C code.  (integer and float overflows, etc.)

¢ Aimed at proving automatically the correctness: () alarm goal.

Analysed Code Features:

A real-life example:

® primary flight control software for the Airbus A340 fly-by-wire system,

e 70,000 lines of C,
® 10,000 global variables, 5,000 of which are 32-bit floating-point,

® one very large loop executed 3.6 - 10° times.
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Octagon Packing

Problem: There are too many variables (10, 000) even for the octagon domain!

Solution: Do not relate all variables together.

¢ Define static packs of a few variables only.

¢ One octagon per pack, no inter-pack relationality.

Automatic Packing: Using simple syntactic criteria.

# lines | # variables | # packs | pack size
370 100 20 3.6
9 500 1 400 200 3.1
70 000 14 000 2 470 35
226 000 47 500 7429 35
400 000 82 000 | 12 964 3.3

— Linear increase in cost: the method is scalable.
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Analysis Results

Astrée includes:

® floating-point octagons using floating-point linearisation,

® symbolic propagation in the interval domain,

e other domains working in R, supplied with linearised floating-point expressions.

Analysis Comparison:

AMD Opteron 248, mono-processor

without symbolic

without octagon

with everything

# lines time memory | alarms time memory | alarms time memory | alarms
370 1.8s | 16 MB 0 1.7s | 14 MB 0 3.1s| 16 MB 0
9 500 90s | 81 MB 8 75s | 75 MB 8 160s | 80 MB 8
70 000 | 2h 40mn | 559 MB | 391 3h 17mn | 537 MB 58 1h 16mn | 582 MB 0
226 000 | 11h 16mn | 1.3 GB | 141 7Th8mn| 1.0GB | 165 8h 5mn | 1.3 GB 1
400 000 | 22h 8mn | 22GB| 282 |20h31mn | 1.7GB| 804 | 13h 52mn | 2.2 GB 0
—> QOur work is instrumental in proving the code correctness!
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Conclusion



Work Summary

To sum up we proposed:
¢ New relational abstract domains between intervals and polyhedra.

Provides new theoretical results.  (properties of closure)
Design and proofs of soundness, exactness, best precision of abstract operators.

¢ Generic techniques for the local enhancement of domains:
Linearisation, symbolic constant propagation.

Avoid the need for more expressive domains.
¢ Adaptation to floating-point arithmetics.

First relational domains to relate floating-point variable values.
¢ Integration within the Astrée analyser.

Motivated new researches. (abstract operators, packing, etc.)
Provided experimental results on real-life examples.
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Abstract Domains Comparison

Domain Invariants Cost Floating-Point
Intervals X € la,b] O(n) yes
Zones X-Y <c |O(n*n? yes
Octagons +X +Y <c | On? n’) yes
Zone congruence | X =Y +a [b] | O(n?, n3) no
Symbolic X=£ O(n) yes
Polyhedra >.iuX; <[ O(en) no
The ability to easily implement floating-point versions is crucial.
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Future Work

¢ Extent the spectrum choice for cost vs. precision trade-offs:

® Define new abstract domains.
(e.g., between octagons and polyhedra; Octahedra, TVPI)

® Define alternate abstract operators.  (fine-grain control, widenings)
® |ocal refinement techniques, non-homogeneous precision  (extend packing)

® Theoretical results on linearisation and symbolic propagation techniques.
(precision guarantees)

¢ Consider new numerical properties, adapted to:
® Complex numerical algorithms.  (finite elements methods)

® Non-numerical properties parametrised by a numerical domain.
(e.g., non-uniform pointer analysis)

® Parametric predicate abstractions.
(complex functional properties, e.g., sorting algorithms)
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Thank you for your attention!



Appendices



Octagon Analysis Example (1)

Absolute Value Computation:

X « [~100, 100]

Y — X

if Y<0{ 0O Y+«—=Y [] Yelse{ ] }
if Y<69 {[] ---}

(I I

The octagon domain can prove that, at [], —69 < X < (9.

] =100 < X <100

0 —-100< X <100 AN -100<Y <100 AN X =Y =0 A -200< X +Y <200
0 —100< X <O0OAN -100€fY<OANX-Y=0A -200<X+Y <0

0 =100 X <OANOLY <100 AN -200€£ X Y <OANXH4+Y =0

] 0<X <100 ANO0LY <100 N X =Y =0AN0<X+Y <200

0 —-100< X <100 AN OL<Y <100 A =200 X —Y <0 AN O0< X +4+Y <200
0 —69<X<69ANAN0<Y<69 A —-138<X-Y<0ANO0LKSXH+Y <138
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Octagon Analysis Example (2)

Rate Limiter:

Y «— 0
while [] random() {
X — [—128,128]

D — [0, 16]
S «—Y

] R— X -5
Y — X

if R<=-D {0 Y+« S=DT] } else
if DSR {0 Y« S+DTI[ }
0 2

The octagon domain can prove that |Y'| < M is stable at [J for any M > 144.

In fact, we have Y € [—128,12§]. ..

Note: The interval domain cannot prove any bound to be stable.
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Interaction Between Closure and Widening

X «—0
Y — [—1,1]
while random()
if X =Y {
if random() { Y «— X +[—1,1] }
else { X —Y+[-1,1] }
+
¥
Non-Terminating Analysis: Using m;, = (m;*) V n
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